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Abstract: The purpose of this study is to analyze newspaper circulation volume data using time series analysis 

and develop an appropriate model used in the prediction of newspaper circulation volume. We focus on the 

prediction by studying the circulation data, modeling and diagnostic checking so that short-term newspaper 

circulation can be predicted with reasonable accuracy. In this paper, the New York Times is chosen as our case 

study. The time series analysis techniques are used in our modeling, in particular, we focus on the 

autoregressive integrated moving average (ARIMA) model due to the non-stationary property of the data 

obtained. The models established are verified via both the residual analysis. Finally, based on the models 

developed we present our prediction results together with some discussions. Our study indicates the potential 

and effectiveness of using the time series modeling in the prediction of newspaper circulation. 

Keywords—time series; autoregressive integrated moving average;autocorrelation function; correlogram; 

model validation and prediction 

I.  INTRODUCTION  

Newspaper circulation is the number of newspapers a particular newspaper bureau distributes in an average day. 

This number includes both newspaper subscriptions and papers bought at newsstands. Subscription numbers are 

largely dependent on the population of a certain region and the newspaper’s reputation (whether it is well-

known or not). These two factors do not change drastically and, accordingly, the portion of newspaper 

circulation that is dependent on subscriptions does not change drastically, either. As a result, most of the 

fluctuations that are present in the circulation data are caused by changes in newsstand sales. Newsstand sales 

are dependent on the news that is covered in a particular issue, the weather (accessibility to newsstands), and 

economic factors. Newspaper circulation is often divided into two parts: daily circulation and Sunday 

circulation. Daily circulation is typically less than Sunday circulation because Sunday editions tend to have 

more sections and have coverage of the previous week’s events, whereas daily editions only cover the previous 

day’s events. Newspaper circulation tends to follow a seasonal cycle. The average circulation of the 6 months 

ending in March is always higher than the average of the 6 months of a year, ending in September. Reasons for 

this could be that many people leave to go on vacation during summers (weather being a major factor), and thus, 

causes people to suspend their subscriptions or stop buying from newsstands.  

 

This paper focuses on the newspaper circulation prediction problem by studying the available circulation data, 

modeling, and diagnostic checking so that the short-term circulation volume can be reasonably predicted. Both 

daily circulation and Sunday circulation were considered in this study. To explore the feasibility and 

effectiveness of the proposed method, the New York Times is used as our case study. Since the circulation data 
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can be considered as a collection of observations made sequentially in time and treated as a realization of a 

stochastic process, the newspaper circulation volume modeling with the time series techniques is used. 

Particularly, we focus on using the autoregressive integrated moving average (ARIMA) model due to the non-

stationary property of the data we obtained. Time series prediction is challenging work due to many 

uncertainties. However, the analysis of historical data can provide valuable insight and is essential for 

developing an appropriate model to predict near-term circulation volume. This paper presents the modeling and 

prediction results. And our study indicates the potential and effectiveness of using the time series modeling in 

the prediction of newspaper circulation. Furthermore, the modeling approach presented here can be easily 

modified and used in short-term newspaper circulation prediction for other urban areas.  

 

II. THE CIRCULATION DATA 

The New York Times is the nation’s third largest newspaper in terms of circulation, behind USA Today and the 

Wall Street Journal. It is owned by the New York Times Media Company, which owns and publishes 40 other 

newspapers worldwide, as well as many other media outlets. The daily and Sunday circulation data of the New 

York Times that was reported to the Audit Bureau of Circulations during the period 1998-2005 can be found 

in[1,2] and they are shown in Fig. 1 and 2, respectively (i.e., a graph showing the observations against time). 

Note that in these two figures, each data point represents the average of the previous 6 months’ data ending on 

the month shown in the graph. Any quantity recorded or observed over time yields a time series. Analysis of this 

data through time series analysis can allow one to properly model the observed data and be able to make a 

prediction of future values. Newspaper circulation, for instance, can be treated as a marketing time series 

because it deals with sales figures over time. Time series analysis is used in many different areas (e.g., 

economics, finance, physical sciences, etc.). In economics, they can be used to predict unemployment figures by 

using past figures. In finance, they can be used to predict future prices of a stock, so a company or an individual 

can consider whether to buy, sell, or hold a stock. In the physical sciences, time series analysis can be used to 

make a hypothesis on future temperature trends, such as global warming. These are only a few of the many uses 

of time series modeling and prediction. The fundamental goal of time series analysis is to understand the 

mechanism that generates the observed data and, in turn, forecast future values of the series. 
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Fig. 1: Time plot of the daily circulation data. 

 

III. TIME SERIES MODELS  

A time series is a collection of observations made sequentially in time. Any quantity recorded over time yields a 

time series. A time series model for the observed data, say {xt}, is a specification of the joint distributions of a 

sequence of random variables {Xt} of which {xt} is postulated to be a realization. The term time series can mean 

both the data and the process of which it is a realization. The fundamental aim of time series analysis is to 
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understand the underlying mechanism that generates the observed data and, in turn, to forecast future values of 

the series. In this section, we briefly review the commonly used time series models. An excellent introduction to 

time series models can be found in [3]. 

 

Time series modeling assumes that the value of the series at time t (i.e., Xt) depends only on its previous values 

and on a random noise. Therefore, if this dependence of Xt on the previous p values is linear, then Xt can be 

represented by Xt = Φ1Xt-1 + Φ2Xt-2  +…+ ΦpXt-p + Zt, where Φ = (Φ1, Φ2, …, Φp) are the model parameters called 

the autoregressive (AR) coefficients and Zt is the disturbance at time t. The process {Zt} is usually modeled as an 

independent and identically distributed (iid) white noise with zero mean and variance σ2. That is, E[Zt] = 0, E[Zt
2] 

= σ2 for all t, and E[ZtZs] = 0 if t ≠ s, where E[.] means the expectation. The process {Xt} is said to be a moving 

average process of order q if Xt can be written as Xt = Zt + θ1Zt -1 + θ2Zt-2 + … + θqZt-q, where θ= (θ1, θ2, …, θq) are 

the moving average (MA) coefficients. In the above, p and q are the orders of AR(p) model and MA(q) model, 

respectively. By combining the AR and MA parts, we get a mixed autoregressive moving average (ARMA) 

process of order (p, q). That is, Xt - Φ1Xt-1 - Φ2Xt-2 -….. - ΦpXt-p = Zt + θ1Zt-1 + θ2Zt-2 + … + θqZt-q, and this defines 

the ARMA(p,q) model. By introducing the back shift operator B, i.e., BiXt = Xt-i, then the ARMA (p, q) model 

can be simplified as Φ(B) Xt = θ(B) Zt ,where Φ(B) = 1 – Φ1B – Φ2B
2 - … – ΦpB

p and θ(B) = 1 – θ1B – θ2B
2 -… 

– θqB
q.   Even though in practice most time series we faced are non-stationary, the stationary ARMA model can 

still be generalized to incorporate a special class of non-stationary time series models. For instance, if the 

observed time series is non-stationary, we can difference the series with Xt replaced by (1-B)d Xt where (1-B) Xt = 

Xt - Xt-1, (1-B)2 Xt = (1-B) Xt-1 = Xt - 2Xt-1 + Xt-2, etc. This operation is called differencing the time series. The 

ARMA model then becomes (1-B)d Φ(B) Xt = θ(B) Zt, which is called the autoregressive integrated moving 

average (ARIMA) model and expressed as ARIMA(p, d, q). In other words, any ARIMA(p, d, q) series can be 

transformed into an ARMA(p, q) series by differencing it d times and, thus, the analysis of an ARIMA process 

does not pose any difficulty as long as we know the number of times to difference the series. Clearly, the ARIMA 

process constitutes of three parts, an autoregressive part (AR), a differencing part (I), and a moving average part 

(MA). The differencing part is used to convert a non-stationary series into a stationary series. It removes the trend 

from the data. 
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Fig. 2:  Time plot of the Sunday circulation data. 
 

In time series analysis, it is very important to calculate the sample autocorrelation function (ACF) from the 
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where X  is the mean value and k (= 1, 2, 3, … ) is known as the lag (which is how many times the data 

sequence is shifted for comparison). Apparently, rk represents the amount of correlation between {Xt} and 

{Xt+k}, or a measure of the strength of the linear relationship between {Xt} and {Xt+k}. If rk = ± 1, the 

correlation will be linear. However, if rk = 0, then there is no relationship between {Xt} and {Xt+k}. The ACF 

provides a useful measure of the degree of dependence among the values of a time series at different times, and 

for this reason they play an important role when considering the prediction of future values of the series in terms 

of past and present values. To find an appropriate model for the data observed we use the correlograms. A 

correlogram is a graph showing the time series ACF values against the lag h. From observing a correlogram 

sometimes we can get important information about the time series. For example, is the series stationary? If it is 

stationary, then is it AR(p), MA(q) or ARMA(p, q) type? What can be the order, i.e, the values of p and q for the 

series?  It is known that for a series that fits MA (q) model, its correlogram should show a sharp cut-off after h > 

q, that is, the ACF becomes zero if h > q, a special feature of MA processes. If the correlogram doesn't cut-off 

sharply and on the contrary, it decays either exponentially or sinusoidally or both, then it may suggest that the 

time series either an AR (p) or ARMA(p, q) type. In this case the correlogram doesn't provide much information 

about the order of the series. So, we pursue the partial correlogram (i.e., partial autocorrelation function PACF 

vs. lag h) to see any additional information can be extracted to find the proper order p. The partial correlation 

between {Xt} and {Xt-k} is the correlation between the two with all variables {Xt-1, Xt-2 … Xt-(k+1)} fixed. It can 

be shown that the partial ACF of an AR(p) process “cuts off” at lag p. Note that sample correlation functions do 

not always resemble the true correlation functions, in particular, when the number of data observed is small. 

Therefore, it should always be used with caution.  

Another type of ARMA order selection is based on the so-called information criteria. The idea is to balance the 

risks of under fitting (i.e., selecting the orders smaller than the true orders) and over fitting (i.e., selecting orders 

larger than true orders). This is done by minimizing a penalty function, and the two commonly used functions 

are: ln σ2+2(p+q)/n (i.e., the Akaike’s Information Criterion (AIC)) and ln σ2+(p+q) ln (n)/n (i.e., the Bayesian 

Information Criterion (BIC)), where σ2 is the estimated noise variance and n is the length of the data. For details 

regarding AIC and BIC criteria and order selection, please refer to any standard time series analysis books (e.g., 

[3, 4]).  

IV. DATA ANALYSIS AND MODELING 

Based on the time plots shown in Figs. 1 and 2, one needs to determine what time series model will be 

appropriate. To begin, it is often necessary to make a non-stationary time series stationary, meaning that its 

statistical properties do not change over time. To fit a time series model to data, we need to transform the raw 

data into a “well-behaved” form suitable for analyzing and modeling. In other words, the transformed data can be 

modeled by a zero-mean, stationary type of process. That is, the trend and mean value must be removed from the 

circulation data. The time plot helps us determine whether the process is stationary. If not, then the series is 

processed to make it stationary. A special type of filtering, which is particularly useful for removing a trend, is 

simply to difference a given time series until it becomes stationary. Differencing is an effective way to remove 

trend and seasonal components in a time series. And it is sometimes used to change a non-stationary time series 

into a stationary time series. Figures 3 and 4 show the zero-mean, differenced circulation data for the daily and 

Sunday cases. In Fig. 4, the 2nd order differencing was necessary for the Sunday newspaper circulation study. 

Since the trend in Figs. 3 and 4 is no longer visible and the series seems stationary), further differencing will be 

unnecessary. Note that the interpretation of the data and the model fitted are by no means unique; often there can 

be several equally valid interpretations consistent with the data. Experience and good judgment also play an 

important role in the modeling process. 
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Fig. 3:The zero-mean, differenced daily circulation data. 

 
Fig. 4: The zero-mean, second-order differenced Sunday circulation data. 

 

To assess the degree of dependence in the time series data and to select a model for the data that reflects this, we 

further examine the correlation function of the data. Figures 5-8 show the correlogram and partial correlogram of 

the differenced data for both the daily and Sunday circulation data. By inspecting these figures, we found that 

both ACF and PACF don’t sharply cut-off to zero, which indicates that the appropriate model should be of the 

ARMA (p, q) type. Therefore, the ARIMA (p, d, q) model should be used for the original raw data because a 

differencing operation was conducted (i.e., d ≠ 0).  

 
Fig. 5:The correlogram of the data shownin Fig. 3. 
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Fig. 6: The correlogram of the data shown in Fig. 4. 

 

 

Fig. 7: The partial correlogram of the processed data shown in Fig. 3. 

 

 

Fig. 8: The partial correlogram of the processed data shown in Fig. 4. 
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The models were selected based on the minimization of the AIC information criterion mentioned earlier. Since 

the Hannan-Rissanen (HR) algorithm[4] is a very effective way in determining ARMA model parameters, we 

used this HR procedure[5] to find the parameter values. For the daily circulation data shown in Fig. 3, we found 

that the ARIMA (1, 1, 1) model with Φ1 = -0.848434 and θ1 = 0.0971008 seems to generate the best results with 

the minimum AIC = 20.2149 among those candidate models selected. Similarly, the appropriate model for the 

Sunday circulation data in Fig. 4 was found to be of ARIMA (1, 2, 1) with Φ1 = -0.557954 and θ1 = -0.966033 

with the corresponding AIC = 8.18584. 

 

V. MODEL VALIDATION 

After fitting a model to a given set of data, the model needs to be examined to see if it is indeed an appropriate 

model. If the model is a “good” one, then its residuals should be random and close to zero. There are several ways 

of checking if a model is “good.” One commonly used approach to diagnostic  checking is  examining the 

residues. That is, the residues can be treated as a time series and the properties and correlogram of the residues 

(i.e., the autocorrelation coefficients of the residues at different lag k) can be studied. Therefore, the residuals, 

which are generally defined as the difference between the observed and fitted values (error), are checked. For a 

good fit, the residual time series should be close to an iid zero-mean white noise. If the residues, say {y1, y2, …, 

yn}, is a realization of such an iid sequence, then about 95% of the sample autocorrelations should fall between 

the bound ± 2/ n . A detailed analysis of residuals from ARMA processes can be found in [3]. To verify the 

models given in data analysis and modeling, we conducted residual analysis. The correlogram of the residuals 

from the ARIMA (1, 1, 1) model for the daily circulation data and the ARIMA (1, 2, 1) model for the Sunday 

circulation data are shown respectively in Figs. 9 and 10. From these figures, one can see that correlation 

coefficients of the residue time series are fairly small and they fall within the bounds ± 2/ n .  Data points that 

fall within these bounds can be considered as “close to zero.” Thus, we have no reason to reject the hypothesis 

that the set of data constitutes a realization of a white noise process. Therefore, these two models will be used in 

the prediction of the circulation volume. Thus, by changing the form of the standard ARIMA equation to match 

the p, d, and q values and by plugging in the parameters Φ andθ, the following models, where {Xt} is the 

circulation volume time series, will result. Notice that the mean value, which was removed earlier, is added back 

into the models on the right side. 

 

 
Fig. 9 The correlogram of the residual time series. 
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Fig. 10 The correlogram of the residual time series. 

 

Daily Circulation Time Series Model: 

 

(1-B)(1+0.848434B)Xt =1.124x106+Zt+0.0971008Zt-1 

 

Sunday Circulation Time Series Model: 

 

(1-B)2(1+0.557954B)X t= 1.677x106+Zt-0.966033Zt-1 

 

VI. CIRCULATION PREDICTION 

 

Based on the modeling of the daily and Sunday circulation time series data, one can now use these models to 

make a prediction of future volume. That is,using the models developed and up-to-date circulation data, future 

circulation can be predicted. However, if future circulation were predicted, we would be unable to check it 

because The New York Times has not released the circulation data for the 6-month period ending in March 

2006 yet. Thus, we would be unable to verify if the model is a good one if we used it to predict future data 

points. So, in order to have an actual figure to compare the predicted value to, we decided to use the time series 

models that we chose to predict known data points. Because p = 1 in both models, only one previous known data 

point is necessary for the purpose of prediction, even though the time series at current value also indirectly 

depends on its previous values (since {Xt} is dependent on {Xt-1} and {Xt-1} is dependent on {Xt-2} and so on). 

The zero-mean, differenced circulation data Yt {t = 1, 2, 3,…} was used together with the model to perform the 

one-step-ahead prediction. Notice that Yt is defined as (1-B)Xt-1.124×106 for daily circulation, Yt = (1-B)2 Xt-

1.677×106 for Sunday circulation, and Xt represents the actual newspaper circulation volume time series. 

 

Figures 11 and 12 show the actual circulation data (zero-mean, differenced) Yt, (i = 1, 2, …) compared to 

predicted circulation data. The Best Linear Predictor algorithm in the Mathematica software [5] was used to 

calculate these predicted values. Clearly, the predicted results Yt can be converted to the actual Xt in the reverse 

operations (i.e., inverse differencing and addition of the mean value). From these two figures, we see that the 

predicted values closely mirror the actual values, thus, these models can be considered reasonably “good,” 

considering only 16 data points were used.  These models can be vastly improved with more data, but it would 

be difficult to obtain, as discussed below. 
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Fig. 11: Result comparison for the daily circulation study. 

 

 

Fig. 12: Result comparison for the Sunday circulation study. 

 

 

Finally, complete content and organizational editing before formatting. Please take note of the following items 

when proofreading spelling and grammar: 

A. Possible Improvement (Model Refinement) 

The most obvious way of improving this model is to use more data. With more data, one can find trends that 

may have lasted for longer than the eight years of data used. In addition, it can also be used to create a better 

model. For instance, with more data points, the bounds, which are defined as ± 2√n, will be smaller and as a 

result, be more helpful in choosing the best model. 

 

However, obtaining additional data would be difficult and costly to do. The Audit Bureau of Circulations, which 

contains large amounts of circulation data, is not to the public and is only available to newspaper companies and 

academic institutions, more specifically, universities. 
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It is very difficult to predict future newspaper circulation with high accuracy because future values are only 

partially dependent on past values. One possible source of error is the amount of the data used. Since only eight 

years of newspaper circulation was used, any trends that lasted more than eight years cannot be determined. 

Because of this, it would be inappropriate to use this model to determine circulation far into the future. 

 

Some other possible causes for errors would be a major news development that would encourage more people to 

purchase newspapers, adverse weather conditions that make newsstands inaccessible, or economic changes. 

These should be considered as outliers. However, we decided not to remove these outliers. The small amounts 

of circulation data was one of the major drawbacks to this study and outlier removal would only exacerbate the 

problem.  

 

VII.  CONCLUSION  

In this paper, we study the modeling and prediction of the newspaper circulation data via the time series 

techniques. The obtained data are treated as a realization of a time series stochastic process. Time series analysis 

is then used for modeling of the circulation volume data. In particular, we focus on the ARIMA model due to 

the non-stationarity of the observed data. Differencing technique is used to remove the trend from the data. The 

data correlation via the correlogram and partial correlogram are further examined to determine appropriate 

model type. In addition, the Hannan-Rissanen procedure is used to determine the model order and also estimate 

the model parameter values. The model validation is performed via the residual analysis. Finally, the time series 

models are used to predict circulation volume and the results are presented. Our study indicates that these 

models can predict newspaper circulation volume with reasonable accuracy. Additionally, it indicates the 

potential and effectiveness of using the time series modeling in the prediction of newspaper circulation.  
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